

Transformers and Beyond

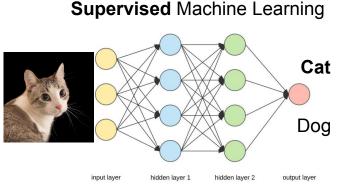
PhD Candidate Iordanis Fostiropoulos {fostirop[at]usc.edu}

Advised by Prof. Laurent Itti

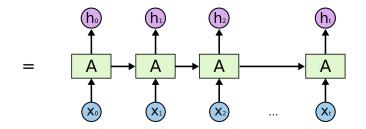
April 4th 2023 Prepared for CSCI 561

Transformer Intuition

The first-half of the content in this presentation is based on [1] [2] that you should read.



Sequence Modeling



Output can be predicting a class, or any data.

Input to the model is the previous output

The Transformer Family
 The Illustrated Transformer
 University of Southern California

Transformer Intuition

Encoder Decoder Architectures

Input some data, output the same data.

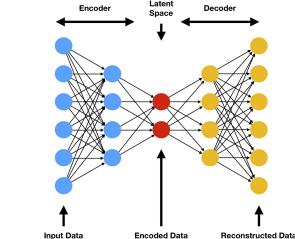
Self-Supervised

Loss is calculated between input data and reconstructed data

The encoded data is a compressed **representation** of the input data.

Can be **useful** in **other** tasks,

i.e. the image representations combined with text representations are used for DiffusionModel



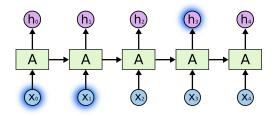
Sequence to Sequence (Tangent)

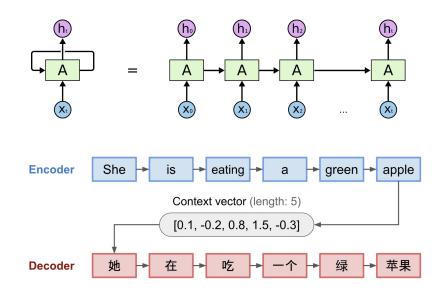
Warning! Relevant **ONLY** in understanding advantage of Transformers

Previously, Recurrent Neural Networks

Have loops, and we can unroll them (i.e.)

Problem processing one token *x* at a time





USC Viterbi School of Engineering Attention? Attention!
 Understanding LSTM Networks

Transformer

Combines an Auto-Encoder with a Seq2Seq objective

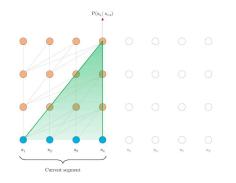
We want to learn to decode the encoded data in a self-supervised manner, but we want to model it as a sequence.

What is the probability of a token given all previous tokens

 $P(x_i|x_{i-1:n})$

Advantage it learns on a segment of a sequence compared to one token at a time (LSTM)

Recurrency (Looping) through segments compared to tokens.



Transformer Encoder-Decoder

Introduced for Machine Translation (MT) i.e. English-to-French

Inputs: English Sentence Outputs: French Sentence

Problems?

Length of English Sentence \neq French Sentence Different Grammar. Order of the translated words is different

Solutions

Encoder-Decoder Architecture (decoder uses a hidden state) Attention Mechanism (each word can "attend" to a sequence of words)

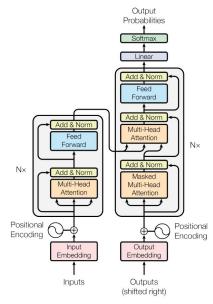


Figure 1: The Transformer - model architecture.

[1] Attention Is All You Need

Encoder Block

Objective

Compress a sequence to a hidden state.

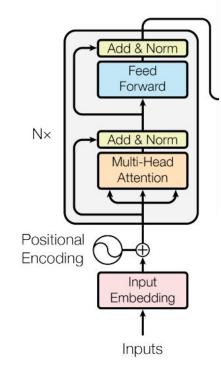
1. Input Embedding Convert words into Vector Representations

2. Positional Encoding Attention is Permutation Invariant we need a way to encode position of a word in the sentence

 $f((x_1, x_2, x_3)) = f((x_2, x_1, x_3)) = f((x_3, x_1, x_2))$

3. Attention!

Learn the context of each word. i.e. what words are before and after the current word???



Decoder Block

Objective

Convert compressed **hidden** state to the expected output. i.e. English Sentence (**hidden state**) to French Sentence

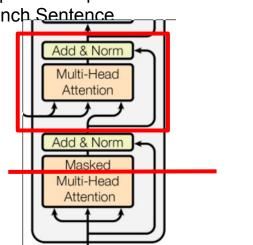
Identical structure to decoder except....

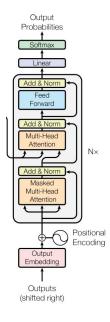
Cross-Attention Block

Compute Attention between hidden state and Output sequence

Masked Self-Attention

Hide attention of subsequent tokens to prevent "cheating"





Attention!

Query (Q) is a token we use to "search" through the most similar keys

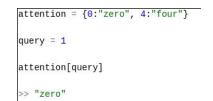
Key (K) a token we use that corresponds to a value

Value (V) the output that corresponds to the key

Most **similar** to a Java HashMap or Python dictionary but... returns the most similar value (**Hard Attention**)

i.e. Oversimplification

1 is closer to 0 than to four



Soft Attention

[1] Show. Attend and Tell: Neural Image Caption Generation with Visual Attention

Attention!

Softmax Normalizes a vector to sum to 1. Meets requirement for probabilities. Each element in the vector is an "event", "category", "class"

i.e. Probability of q = 1 being "zero" is softmax([-1,-3]) = 0.8808

Transpose (T) is the transpose of the Key (For performing a Dot Product)

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \operatorname{softmax}(rac{\mathbf{Q}\mathbf{K}^{ op}}{\sqrt{n}})\mathbf{V}$$

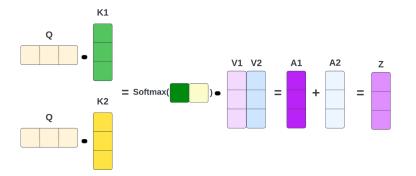
Illustration... Not real code

soft_attention = {0:"zero", 4:"four"}

query = 1

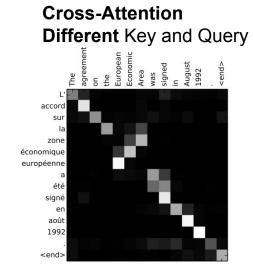
soft_attention[query]

>> ["zero"*0.8808, "four"*0.1192]

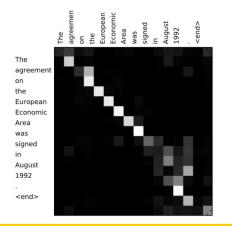


Attention!

Attention is applied on sequences. Matrix of attention from row element to column element.



Self-Attention Same Key and Query



Masked Attention!

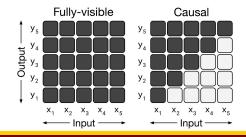
Attention Matrix is the computational bottleneck of Transformers. Quadratic memory growth with sequence length.

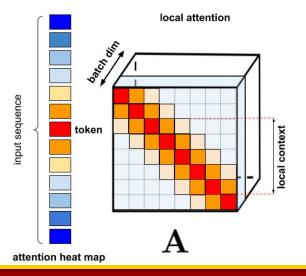
O(n^2) x Value Dimension (Embedding Dimension) x Attention Head x Layers = Large!

Solution Sparse Matrices attend to local context (around a word)

Problem Self-Attention is *somewhat* cheating. Easy to decode each word, if we can see before and after. We do not learn much about the **structure** of language

Solution Causal Attention Mask future tokens





Multi Headed

In practice, the biggest improvement of Attention is applying it many times in parallel.

Same input, different attention heads.

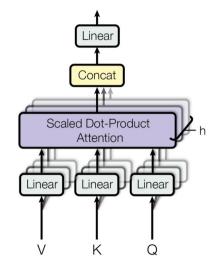
Concatenate Output of all heads.

Combine With a linear layer.

So.... What exactly are we learning?

Linear is a learnable parameter (weight matrix)

Dimensionality **Embedding Dimension**



Input Embedding

Problem

Can't do math on words. i.e. "zero"*0.88 ValueError

Making words into numbers. A lookup table.

- 1. Input sentence is "Cat on MAT!"
- 2. **Tokenize** = ["cat", "on", "mat"] = [2,5,10]
- 3. **Embed**([2,5,10]) = [[1.2,-0.1,4.3, 3.2], [2.1,0.3, 0.1, 0.4] [2.1,0.3,0.1,0.4]]

A 4-dimensional embedding

_				
cat =>	1.2	-0.1	4.3	3.2
mat =>	0.4	2.5	-0.9	0.5
on =>	2.1	0.3	0.1	0.4

...

[1] Word Embeddings

...

Permutation Invariance

Attention is Permutation Invariant

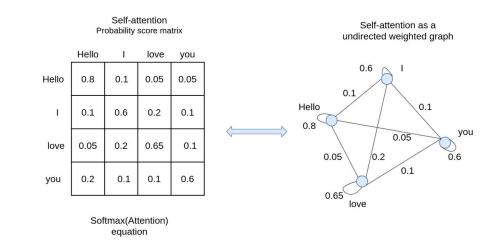
Order of words does not matter.

i.e. swapping rows and columns result in equivalent values.

Solution

Encode positional information

Positional Encoding

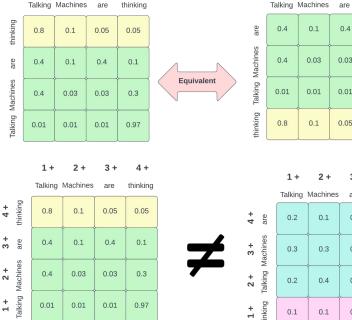


[1] Attention Graph

Positional Encoding

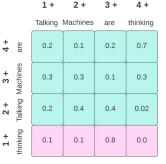
Add an embedding that encodes the position of the word in the sentence.

Switching the columns results in different attention computation



	raiking	indonineo	ure	ummang
are	0.4	0.1	0.4	0.1
Talking Machines	0.4	0.03	0.03	0.3
Talking I	0.01	0.01	0.01	0.97
thinking	0.8	0.1	0.05	0.05

thinking



Train Objective

Output of Transformer Layer is a sequence

AutoEncoder Objective. Reconstruct Input

n = Sequence Length

h = Embedding Dimension

Input Shape [n , h] and Output Shape
[n , h]

Use linear layer to project each token (i) [1, h] \rightarrow [1, h, vocabulary size] = **logits**

Softmax(logits) = **preds** \rightarrow Probability of token (i) to be a word at index j in the preds

Goal Maximize Probability of predicting the correct word

BERT - Denoising Transformer Encoder

Transformer Encoder ONLY!

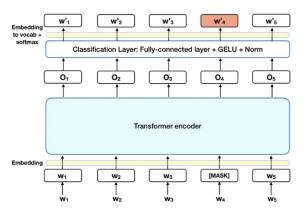
- *Hide* input tokens by replacing them 1. with the same special [MASK] token
- 2. Maximize probability of correctly predicting the real value of the masked token

Special Tokens can be added to the vocabulary that are not part of the language for special purpose i.e. [SEP] Start of New Context [EOS] End of Sequence [CLS] Used for classification tasks and more

Pre-training BERT

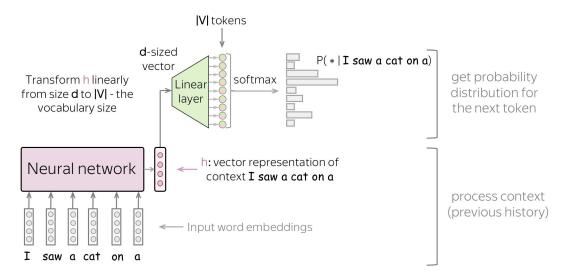
✓ Task 1: Masked Language Model (MLM)

- I 5% of each sequence are replaced with a [MASK] token
- Predict the masked words rather than reconstructing the entire input in denoising encoder



Next Token Prediction

Used to model Causal relationships



GPT - Decoder Only

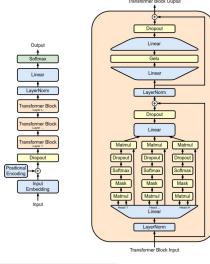
Transformer Decoder Only! (without cross-attention)

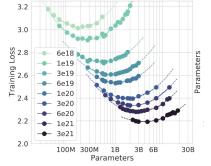
Different Causal Language Modeling Try to predict next word given the current context so far

In Summary: GPT vs GPT2 vs GPT3 vs GPT4

Scaling Laws

More Layers, Larger Hidden Dimension, More Data





[1] Training Compute-Optimal Large Language Models

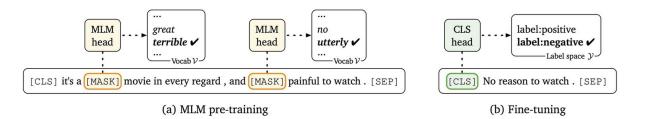
University of Southern California

Transformer Block Ouptut

How to use a Large Language Model

Fine tune to a specific task i.e. Sentiment Classification

Prompt to generate new context. Start a sentence, ask the model to complete it.

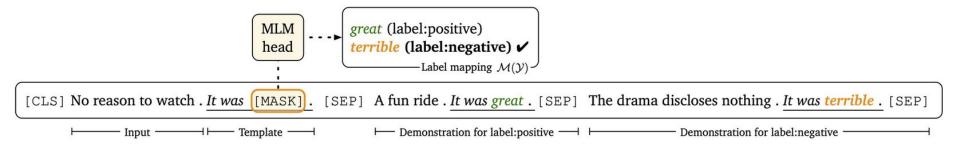


Prompting

We use [SEP] to separate contexts.

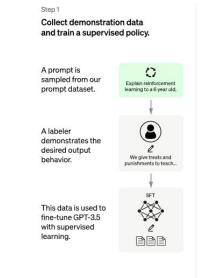
Single Input:

[CLS] Some prompt (Question) [SEP] Some Answer [SEP] Second Question [SEP] Second Answer [SEP]



ChatGPT (Step 1)

- 1. **Train** a Large GPT (Causal Language Modeling)
- Fine-Tune GPT with prompts collected from human annotators i.e. Ask a human "Explain reinforcement learning to a 6 year old."



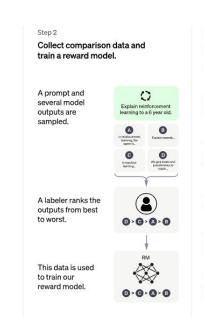
ChatGPT (Step 2)

- 1. Provide a prompt to the model
- 2. Sample Outputs
- 3. Ask humans to rank outputs (easier than writing them)

Reward Model

- 1. Given Prompt
- 2. Predict reward of each prompt

Reward Model is used next... in Reinforcement Learning



ChatGPT (Step 3)

Reinforcement Learning

Summary

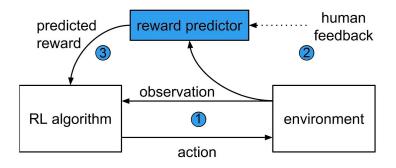
Given observation in Environment what is the best action to take

Interactive

i.e. Observation $1 \rightarrow \text{Action } 1 \rightarrow \text{Observation i}$ Observation $1 \rightarrow \text{Action } 2 \rightarrow \text{Observation j}$

Goal Pick action that maximizes reward

Similar to tree search?



ChatGPT (Step 3 cont.)

Reward Model (from Step 2) Used to predict expected reward of prompts and actions.

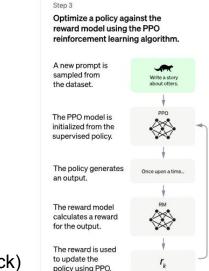
PPO fancy way of saying **train** a **Reinforcement Learning** agent Proximal Policy Optimization

Use RL agent to pick prompts

ChatGPT is not new (research from 2017)

Advantage

High Quality Annotators (Reinforcement Learning from Human Feedback) **Engineering** Achievement



Alignment

Why does Reinforcement Learning from Human Feedback (RLHF) work so well?

Alignment

How do we align AI systems to our goals? By giving them feedback

Warning! Opinion Based Perspective

Are they conscious? Are they dangerous? Are they....

We can't answer... but ...

(Opinion) They are impressive but are just statistical machines

Technophobia

First man to use an umbrella for rain Jonas Hanway (1712-1786) Mocked for his portable roof

In 1865, the British Parliament passed a law to regulate a new, scary invention: the horseless carriage.

Beyond ChatGPT - AlphaFold

Transformers can solve important problems.

"AlphaFold can accurately predict 3D models of protein structures and is accelerating research in nearly every field of biology."

Drug Discovery

Can design drugs by simulating their behavior. Reduce search space of drugs

